Shift-Reduce CCG Parsing using Neural Network Models
نویسندگان
چکیده
We present a neural network based shiftreduce CCG parser, the first neural-network based parser for CCG. We also study the impact of neural network based tagging models, and greedy versus beam-search parsing, by using a structured neural network model. Our greedy parser obtains a labeled F-score of 83.27%, the best reported result for greedy CCG parsing in the literature (an improvement of 2.5% over a perceptron based greedy parser) and is more than three times faster. With a beam, our structured neural network model gives a labeled F-score of 85.57% which is 0.6% better than the perceptron based counterpart.
منابع مشابه
Expected F-Measure Training for Shift-Reduce Parsing with Recurrent Neural Networks
We present expected F-measure training for shift-reduce parsing with RNNs, which enables the learning of a global parsing model optimized for sentence-level F1. We apply the model to CCG parsing, where it improves over a strong greedy RNN baseline, by 1.47% F1, yielding state-of-the-art results for shiftreduce CCG parsing.
متن کاملLSTM Shift-Reduce CCG Parsing
We describe a neural shift-reduce parsing model for CCG, factored into four unidirectional LSTMs and one bidirectional LSTM. This factorization allows the linearization of the complete parsing history, and results in a highly accurate greedy parser that outperforms all previous beam-search shift-reduce parsers for CCG. By further deriving a globally optimized model using a task-based loss, we i...
متن کاملNeural Shift-Reduce CCG Semantic Parsing
We present a shift-reduce CCG semantic parser. Our parser uses a neural network architecture that balances model capacity and computational cost. We train by transferring a model from a computationally expensive loglinear CKY parser. Our learner addresses two challenges: selecting the best parse for learning when the CKY parser generates multiple correct trees, and learning from partial derivat...
متن کاملTAG Parsing with Neural Networks and Vector Representations of Supertags
We present supertagging-based models for Tree Adjoining Grammar parsing that use neural network architectures and dense vector representation of supertags (elementary trees) to achieve state-of-the-art performance in unlabeled and labeled attachment scores. The shift-reduce parsing model eschews lexical information entirely, and uses only the 1-best supertags to parse a sentence, providing furt...
متن کاملShift-Reduce CCG Parsing
CCGs are directly compatible with binarybranching bottom-up parsing algorithms, in particular CKY and shift-reduce algorithms. While the chart-based approach has been the dominant approach for CCG, the shift-reduce method has been little explored. In this paper, we develop a shift-reduce CCG parser using a discriminative model and beam search, and compare its strengths and weaknesses with the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016